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Program transformation has been advocated as a potentially appropriate methodology for program 
development. The ability to transform large programs is crucial to the practicality of such an 
approach. 

This paper describes research directed toward applying one particular transformation method to 
problems of increasing scale. The method adopted is tha t  developed by Burstall and Darlington, and 
familiarity with their work is assumed. 

The problems which arise when attempting transformation of larger scale programs are discussed, 
and an approach to overcoming them is presented. Parts of the approach have been embodied in a 
machine-based system which assists a user in transforming his programs. The approach, and the use 
of this system, are illustrated by presenting portions of the transformation of a compiler for a "toy" 
language. 

Categories and Subject Descriptors: D.I.1. [ P r o g r a m m i n g  Techniques] :  Applicative (Functional) 
Programming; D.3.2 [ P r o g r a m m i n g  Languages] :  Language Classifications--applicative languages; 
D.3.4. [ P r o g r a m m i n g  Languages] :  Processors--optimization; F.3.1 [Logics a n d  M e a n i n g s  of  
P rog rams] :  Specifying and Verifying and Reasoning about Programs 

General Terms: Design, Languages 

Additional Key Words and Phrases: program transformation, program development 

1. INTRODUCTION 

Motivated by the increasingly significant cost of software development and 
maintenance in the computing environment, researchers have sought methodol- 
ogies for program development. One such methodology that  has been advocated 
is that  of program transformation {see, e.g., [1, 2, 10]). The application of program 
transformation is not limited to assisting software development. Other areas 
include 

(1) investigating classes of algorithms (e.g., synthesis of several sorting algorithms 
from a single specification [8], list-copying algorithms [19]); 

(2) assisting program description and verification (e.g., proof of a list-copying 
algorithm by developing it through transformation and proving the correct- 
ness of each transformation step [21]); 

(3) adapting existing programs (e.g., adaption and maintenance of mathematical 
software packages [4]). 
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2 Martin S. Feather 

Our primary interest within this paper is directed only toward the application of 
transformation to assist software development. 

We adopt one particular transformation method, that developed by Burstall 
and Darlington as presented in [6], and investigate its application to larger sized 
examples. To keep this paper concise, we assume that the reader is familiar with 

their work. 
We have concentrated upon developing techniques for transforming nontrivial 

programs and have embodied many of them in our transformation system ZAP. 
As evidence that  this has enabled us to tackle sizable transformations, we cite 
our success in using ZAP to transform an entire text-formatting program. 

In Section 2 we consider the implications of adopting Burstall and Darlington's 
method as a basis for software development. In Section 3 we raise the issues 
relevant to increasing the scale of programs to be transformed. Our approach and 
system are described in Section 4; portions of our transformation of a compiler 
for a "toy" language illustrate this. In Section 5 we review the approach and its 
successes, limitations, and possible extensions. 

2. IMPLICATIONS OF ADOPTING BURSTALL AND DARLINGTON'S 
TRANSFORMATION METHOD 

BurstaU and Darlington's method consists of the repeated application of a small 
number of simple manipulations to recursion equations to produce modified 

recursion equations. 
Two immediate consequences of adopting their technique are that  the program 

to be transformed must be written in recursion equations and that, after trans- 
formation, we are left with a program still in recursion equations (in particular, 
without side-effects, assignment, etc.). The former implies a restriction on the 
nature of the programs we may propose for transformation; the latter implies 
that  the end result of our transformations will typically require further processing 
(outside the scope of this method) in order to obtain a program in some 
conventional imperative language making use of iteration and destructive data 
operations. 

We point out that  there is nevertheless a wide difference between the structure 
of recursive programs proposed as specifications and the structure of the trans- 
formed programs we emerge with. Our approach is to write a (very) straightfor- 
ward algorithm to solve the problem in recursion equations, test this algorithm 
on small examples, and, having satisfied ourselves that  it exhibits the behavior 
we desire, transform it with the intention of attaining a (typically grossly changed) 
structure close to that  of an efficient imperative solution. 

The recursion equations formed the basis of a language, NPL, for which 
Burstall implemented an interpreter ([5]). The spirit of NPL has since been 
incorporated into a new language, HOPE, described in [7]. Our experience with 
writing straightforward recursion equation programs has been encouraging; once 
we have the programs syntactically correct, we find that they are usually seman- 
tically correct. 

Conversion of a purely applicative recursion equation program into an imper- 
ative program is necessary to achieve two effects: first, to replace recursion with 
iteration, and second, to make use of destructive operations to overwrite shared 
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data structures. Certainly, the task of performing such conversion is nontrivial, 
hence fundamental to the viability of this particular approach. This falls outside 
the scope of the work we have done. We might hope to achieve the first effect by 
developing more sophisticated compilers (e.g., some LISP compilers are able to 
convert tail recursion into iteration). Achieving the second effect is much harder; 
we might apply different transformation techniques {e.g., [11]) or annotate 
recursion equations with (mechanically verifiable) assertions which would be 
sufficient to permit compile-time garbage collection {e.g., [23, 25]). 

3. TACKLING LARGER SCALE TRANSFORMATIONS 

Whatever transformation method we adopt, if our hope is to use transformation 
for software development, we must face the issues which arise when we attempt 
to tackle large-scale problems, including these: 

(1) How rapidly does the effort required to transform grow with the scale of 
the problem, and what can we do to minimize the impact of such growth? 

(2) How confident are we in the correctness of our adopted transformation 
method and the correctness of our application of it? 

(3) Does the use of transformation help the process of software maintenance; 
that is, if we make modifications to our initial program, must we reperform the 
entire transformation process from scratch, or may we save some unnecessary 
effort by reusing portions of the first transformation? 

We consider the first two issues in the context of adopting Burstall and 
Darlington's transformation method. The third issue is clearly of great practical 
significance; however, we have not investigated very far in that direction. 

The adopted transformation method consists of the repeated application of 
small manipulations; hence, in increasing the scale of the program to be trans- 
formed, we must necessarily perform a longer sequence of such manipulations. It 
is readily apparent that  we must find a better structure for our transformations 
than merely long linear sequences. The approach we have developed has been to 
structure the transformation hierarchically, each layer of the hierarchy expanding 
into the next layer down, with the bottom layer being the linear sequence of 
manipulations. At the highest layers we do this expansion by hand. Our transfor- 
mation system, ZAP, takes over at an intermediate layer and completes the 
expansion down to manipulation sequences. Thus there are two inputs to ZAP: 
the simple program serving as specification and the sequence of commands to 
direct its transformation. We call the sequence of commands a "metaprogram" 
{since it tells the system how to transform a program). The output is the 
transformed program; see Figure 1. We wish to stress the existence of metapro- 
grams as manipulable objects. A metaprogram may serve as documentation of 
how efficiency has been introduced into the transformed program. Retaining a 
metaprogram allows us to repeat the transformation; modifying a metaprogram 
allows us to modify the implementation without altering its functional behavior. 
In the case of a modification to the specification, we may be able to reuse the 
same metaprogram or see how to adjust it to transform the adjusted specification. 
The emphasis in the design of ZAP has been to use metaprograms to improve 
communication between user and system, so that the user can be in control of 
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S Specification 
I (simple recursionJ 
~. equation prograrn)~ 

Metaprog ram % 
(sequence of commands)~// 

/ 
izAP .steml 

(tran,forme, program) 
Fig. 1. Inpu t  and  ou t pu t  of  ZAP. 

the transformation but can say what he has in mind in a suitably pithy way. In 
this respect we have taken a very different direction from the more automatic 
and heuristic approach embodied in Darlington's system [9] and in Manna and 
Waldinger's DEDALUS system [20]. 

Provided our hierarchical approach is only permitted to make changes to 
programs by descending to the level of applying manipulations, we may limit our 
concern to the correctness of our implementation of these manipulations and to 
their theoretical correctness. It is clear that  Burstall and Darlington's manipula- 
tions preserve partial correctness; total correctness is not assured--we may lose 
termination. In practice, this does not appear to be a danger. Should we wish to 
be certain, we might seek to prove termination formally. Alternatively, we might 
try to show that  our particular sequence of manipulations is guaranteed to 
preserve termination. Kott [18] has investigated this latter approach. 

4. APPROACH TO TRANSFORMATION 

In this section we describe our approach to transformation. The features of our 
approach are illustrated by means of small examples, and where appropriate by 
presenting their application to performing transformation of a sizable program. 
Before considering transformation, we introduce the problem serving as the 
sizable example and briefly describe our construction of a simple recursion- 
equation program to serve as the specification. 

4.1 The Example Problem 

Our task is to produce part of a compiler for a 'itoy" language: the part to convert 
abstract syntax trees into machine code. We choose a very simple language with 
the following constructs: 

Statements: assignment; 
while-loop; 
if-then-else; 
block (headed by local variable declarations). 

Expressions: variable; 
operator applied to a list of expressions. 

Our task is very easy; we do not even have procedures or functions within our 
language. Nevertheless, we are faced with a representative class of compiling 
problems: evaluating expressions, coding loops and conditionals, and identifying 
the correct incarnation of local variables defined in blocks. 
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Compile 

AssembleJ/ ~ ' ~  
/ 

Remove-Variables 

Remove-Variables 
-From-Stmt 

Remove-Variables 
-From-Expr 

It 
Remove-Variables 
-From-List-Expr 

\ 
FormiAssembler 

Form-Assembler 
-From-Stmt 

Form-Assembler  
-F rom-Exp r  

It 
Form-Assembler 
-F rom-List-Expr 

Remove- Labe 1 s 
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Fig. 2. S t ruc tu re  of  initial program.  

We assume a stack machine with the following instructions: 

load to load a value from an address onto the stack; 
store to pop the value from the stack and store it in an address; 
jump to jump to an address; 
conditional jump to pop the value from the stack and jump only if that  value 

represents "true"; 
apply to apply an operator, which causes enough values to be popped 

off the stack and the answer to be pushed on; 
nonop to do nothing. 

4.2 The Initial Program 

Our philosophy for design of the initial program is to split the task into simpler 
subtasks which communicate with each other in a straightforward manner. Each 
subtask is further divided until we reach trivial operations for which we can 
confidently write functions to carry them out. For our compilation problem we 
are led to an initial program with the structure shown in Figure 2. The overall 
task is split into two subtasks: first, form assembly code (which will be akin to 
machine code but for the use of labels instead of explicit locations) from the 
incoming source statement, and second, replace jumps to labels with jumps to 
locations in order to obtain machine code from our intermediate assembly code. 
The first subtask breaks down further into replacing variables within the incoming 
source statements by locations and then from this forming assembly code to 
perform each statement's action. The breakdown of the problem continues in this 
fashion. 

We can see that the outcome will be a multipass program, where each pass 
does some simple activity and communication between the passes is by the 
handing over of a bulky but conceptually simple data structure. Thus our 
specification structure models a conceptual breakdown of the task, far removed 
from the structure an efficient solution to the problem would exhibit. Our 
transformation techniques must find the path between the two. 
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4.3 Transformat ion 

Having described the problem, we may now consider how to perform the trans- 
formation. When faced with a program of the scale of this compiler, we must plan 
our approach to its transformation. As outlined earlier, we take a hierarchical 
approach to structuring the transformation activity. We call the highest level of 
our hierarchical organization the "strategy" level. 

4.3.1 Transformation Strategies. Much of the benefit of following a strategy 
comes from having organized the overall transformation process in a comprehen- 
sible manner: during its execution we are better able to gauge our progress, keep 
track of our objectives, and draw parallels between similar portions of the 
transformation. 

The transformation strategy we have applied to the compiler problem and 
other examples is a "bottom-up" strategy based on the program structure; we 
first transform the lowest level functions, then transform the functions that  make 
use of them, and so on. We have not had sufficient experience with other 
strategies to suggest that  this bottom-up strategy is in general better (or even as 
good as) any other. This strategy has proven reasonably robust, insofar as on all 
but one occasion {during the transformation of the largest example we have 
tackled) we have been able to follow it through the entire transformation. 

With respect to the compiler example, we concentrate our attention on only a 
portion of the entire transformation plan: that  part dealing with Assemble. The 
strategy suggests that  we first improve the functions it makes use of before 
tackling it itself. Similarly, we would separately transform Remove-Labels and 
then be in a position to tackle Compile, which makes use of both of these. 

The consideration of transformations to improve individual functions takes us 
down to the next level in our hierarchy, that  of transformation "tactics." The 
transformation system as implemented does not provide any support for produc- 
tion of strategies or their expansion into tactics. Despite the lack of such support, 
we have nevertheless found it beneficial to work downward all the way from this 
strategy level, expending manual effort to do so. 

4.3.2 Transformation Tactics. At this level the task is to transform an individ- 
ual function. The scope of the problem has been narrowed to the structure of 
that  function and its use of other functions. We need not consider the context in 
which it is used, nor {ideally) the entire structure of the functions it uses. 

We have found three tactics to be of use frequently; we call them "combining," 
"tupling," and "generalizing." They are as follows: 

The Combining Tactic. This tactic is applicable when the body of the function 
under consideration contains nested function calls. Its action is first to replace 
these nested c,ll.q with a call to a single (possibly new) function, defined as the 
nested combination, and then to transform the new function to obtain an 
immediately recursive definition. The following trivial example serves to illustrate 
this tactic. 

Example. Suppose we are concerned with a function whose definition contains 

Sum(Squares(NUMLIST)) 
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where Sum and Squares are defined by 

Sum(nil) <= 0 
Sum(cons(N,NUMLIST)) <= N + Sum(NUMLIST) 

Squares(nil) <= ni l  
Squares(cons(N,NUMLIST)) <= cons(N*N,Squares(NUMLIST)) 

Then the combining tactic suggests we define a new function: 

I SumSquares(L) <: Sum(Squares(L)) I 

Using this, we replace the nested call in the original expression by 

SumSquares(NUMLIST) 

and then transform SumSquares to obtain 

I SumSquares(nil) <: 0 
SumSquares(cons(N,L)) <= N*N + SumSquares(L) 

The efficiency improvements result from having replaced two function calls by 
a single call and having completely eliminated the construction and subsequent 
consumption of the data structure intermediate to the nested function calls. 

In our compiler example, this tactic would be applicable when seeking to 
transform Assemble, since the defmition of Assemble is 

i Assemble(STMT,ADR) 
<= Form-Assemble r(Remove-Variables(STMT, ADR) ) I 

In this case there is no need to define a new function, since the body of Assemble 
is the nested function call. We would transform Assemble to derive a recursive 
version not making use of Form-Assembler or Remove-Variables. 

In general, we may have many nested function calls, for example, 

Funl(Fun2(... Fun.( . . . ) . . . ) ) ,  

in which case we might attempt to combine them all at once or, less ambitiously, 
combine them incrementally. 

The Tupling Tactic. This tactic is applicable when the body of the function 
under consideration contains separate (nonnested) calls to two or more functions, 
with the calls sharing argument(s). Its action is first to replace these separate 
calls with a single call to a (possibly new) function defined to return as a result a 
tuple of the results of the separate calls, and then to transform the new function 
to obtain an immediately recursive definition. Pettorossi [24] examines this tactic 
and its implications for efficiency improvement in some detail. This tactic is used 
during transformation of our compiler program, although not in the portion we 
examine. 

The Generalizing Tactic. This tactic may be applied on any occasion where 
there is a function call. Its action is to replace the call with a call to a {possibly 
new) more general function. The benefit of applying this tactic is realized when 
the original function does not admit to improvement but the more general 
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function does. Reference [6, app. 1] presents a good example of this. We see a 
trivial application of this tactic during the compiler program's transformation in 
the next section. 

We draw an analogy with theorem proving, where the strengthening of an 
induction hypothesis is necessary to permit completion of an inductive proof. Not 
surprisingly, it is much harder to decide when (and how!) to apply the general- 
ization tactic than the other tactics. 

The above tactics have all been recognized as techniques for use in program 
transformation by other researchers: 

(1) combining (also called "functional composition"): [6, 22]; 
(2) tupling (also "pairing," "functional combination"): [3, 6, 15]; 
(3) generalizing (also "embedding"): [3, 6, 27]. 

Consideration of implementing the tactics takes us down to the next level in 
our hierarchy, that  of "pattern-directed" transformations. It is from this point 
that the ZAP system takes over the work: pattern-directed transformations are 
expressed as commands to the system, to be expanded into the appropriate 
manipulations. In practice, it is the task of realizing tactics with pattern-directed 
transformations that consumes much of the user's time and effort in a transfor- 
mation; hence, any further development of the system would best be concentrated 
here. 

4.3.3 Pattern-Directed Transformations. At this level the task is to carry out 
the actions suggested by a tactic. The ultimate objective (which we are nearing) 
is to implement them as linear sequences of manipulations. This level serves as 
an intermediary between tactics and manipulations. 

The two main features of this level are 

(1) a mechanism to limit the context of the transformation and 
(2) a mechanism to express the objective of the transformation. 

These are fully supported by commands to the transformation system. We present 
these by giving a small example, followed by a look at their application in the 
transformation of the compiler. The expansion process down to manipulation 
sequences is discussed in Section 4.3.4. 

Returning to the Sum(Squares(NUMLIST)) example, we may be dealing with 
some function (Foo, say) of the form 

F o o ( N U M L I S T )  < =  . . .  S u m ( S q u a r e s ( N U M L I S T ) )  . . . .  

We want to create a new function to be used in place of the nested call. The 
commands we would issue to our system to do this are as follows: 

CONTEXT 
UNFOLD Foo 
USING RESTRICTED Sum Squares 
TRANSFORM 

GOAL Foo(NUMLIST) <= $$(&&SumSquares(NUMLIST)) 
END 

END 
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C O N T E X T . . .  END establishes the context  in which the t ransformation takes 
place. 

UNFOLD Foo states tha t  the equation for Foo is to be used for unfolding. 
Occasionally, we wish to use for unfolding the equations for a function and all the 
functions tha t  are made use of, directly or indirectly, by tha t  function. To achieve 
this we would use the UNFOLDALL command ra ther  than  UNFOLD. Thus,  
UNFOLDALL Foo would state tha t  the equations of Foo, Sum, S u m S q u a r e s , . ,  
and + be used for unfolding. 

USING RESTRICTED Sum Squares  states tha t  functions Sum and Squares  
may  occur in any new function's definition. 

TRANSFORM . . . END contains transformation(s) to be performed within the 
established context. Each t ransformation is expressed as a GOAL, consisting of 

,~ , , .  
two portions separated by < =  , the left-hand side is the expression to be 
transformed, and the r ight-hand side, which we call a "pat tern ,"  is an approxi- 
mat ion of the answer sought. The  strange symbols "$$"  and "&&" permit  us to 
write approximations.  "&&" prefixes the name we wish to give to our new function, 
and its occurrence marks the position where we want a call to tha t  new func- 
tion. "$$"  marks an arbi t rary  port ion of the expression, with some restric- 
tions; in particular, it may  not  s tand in place of any functions declared as 
USING RESTRICTED. 

The effects of these commands are to cause the new function SumSquares to 
be defined (and its type declaration made) and Foo's definition to be modified to 
make use of it. 

Next, we want to t ransform SumSquares  itself; this we do as follows: 

CONTEXT 
]JNFOLD SumSquares Sum Squares 
USING SumSquares 
TRANSFORM 

GOAL SumSquares(nil) <= 0 
GOAL SumSquares(cons(N,L)) <= $$(N,SumSquares(L)) 

END 
E N___~D 

This  states tha t  within the defined context  we unfold definitions of SumSquares, 
Sum, and Squares. USING declares which of the functions being used for 
unfolding (in this case, SumSquares)  may  occur in the t ransformed expression. 
(The implications of USING and USING RESTRICTED may appear  arbitrary.  
Our only defense is tha t  in practice they provide the desired effects.) 

The  T R A N S F O R M . . .  END block contains two GOALs, corresponding to 
the cases into which we wish to split the definition of SumSquares .  The  first, 
GOAL SumSquares(nil)  < =  O, is the "base case" for our recursive defini- 
t ion of SumSquares .  In situations where the pa t te rn  is a trivial expression 
(e.g., a constant,  as here) there  is no need to provide it; the goal could have 
been expressed simply as GOAL SumSquares(nil).  The  second, GOAL 
SumSquares(cons(N,  L)) < =  $$(N, SumSquares(L)),  corresponds to the recursive 
case for SumSquares .  The  provided pat tern  expresses our wish for an answer 
somehow involving N and a recursive call SurnSquares(L). 

Now we consider how to apply these mechanisms to a port ion of the compiler 
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transformation, the transformation of Assemble. At this point we must introduce 
some data definitions and function definitions. 

The data definitions of objects to represent abstract syntax and machine code 
are given in Figure 3. 

There exist analogous definitions for source-statement' and expression', which 
differ only in having explicit addresses in place of variables. 

The relevant function definitions are 

A s s e m b l e  : sout~e-slolemenl x addr~s -> listassembler 

Assemble(STMT,AOR) <= Form-Assembler(Remove-Variables(STMT,ADR)) 

Remove-Variables :souse-statement x oddr~s -> sou~e-slaleme/zl" 

Remove-Variables(STMT,ADR) 
<= Remove-Variables-From-Stmt(STMT,Empty-Env(ADR)) 

Form-Assembler : sou~e-slatement'-> l~tQssembier 

Form-Assembler(STMT') <= Form-Assembler-From-Stmt(STMT',InitiaILabel) 

In the above, the second parameter of Remove-Variables-From-Stmt is an envi- 
ronment: a data structure containing a mapping from variable names to addresses 
and the address in store (ADR) from which to allocate space for new variables 
declared in source statement STMT; Empty-Env(ADR) constructs an initially 
empty environment. The second parameter of Form-Assembler-From-Statement 
is a label from which unique new labels are constructed when required. 

The transformation we wish to perform is to improve Assemble by combining 
Form-Assembler and Remove-Variables, in a fashion similar to the combination 
of Sum and Squares in our earlier example. Since Form-Assembler and Remove- 
Variables each make a call on a more general function (Form-Assembler-From- 
Strut and Remove-Variables-From-Stmt, respectively), our first step is to gener- 
alize Assemble, defining a new function Assemble-Stmt: 

CONTEXT 
UNFOLDALL Assemble 
USING Empty-Env In i t ia lLabel  
USING RESTRICTED Form-Assembler-From-Stmt 

Remove-Variables-From-Stmt 
TRANSFORM 

GOAL Assemble(STMT,ADR) <= 
$$(&&Assemble-Stmt(STMT,Empty-Env(ADR),InitiaILabel)) 

END 
END 

This modifies Assemble and produces the definition 

Assemble-Stmt :sou~e-statemem x environment x Nbel - >  l~tagembler 

Assemble-Stmt(STMT,ENV,kAg) 
<= Form-Assembler-From-Stmt( 

Remove-Variables-From-Stmt(STMT,ENV),LAB) 

Observe that  Empty-Env(ADR) has been generalized to ENV (a variable of type 
environment), and InitialLabel to LAB (a variable of type label). 

Essentially, we have generalized the combination of Form-Assembler and 
Remove-Variables to the combination of Form-Assembler-From-Stmt and Re- 
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expression <= e x p r ( v a r i a b l e )  ++ a p p l i c a t i o n ( o p e r a t o r  , l i s t express ion)  

source-Malemen! <= as s i g nme n t ( variable , expression ) 
++ w h i l e - l o o p ( e x p r e s s i o n ,  source-s ta tement )  
++ i f - t h e n - e l s e ( e x p r e s s i o n  , source-s ta tement  , 

source-s tatement)  
++ b l o c k  ( list variable , wurce - s ta t emen t )  
++ source-s tatement  $ souwe-s ta temenl ;  

assembler  <= l o a d ( a d d r e s s )  ++ s t o r e ( a d d r e s s )  ++ j u m p ( l a b e l )  
++ j u m p o n t r u e ( l a b e l )  ++ a p p l y ( o p e r a t o r )  ++ 

+ 1 a b e  1 1 e d - a s s e mb 1 e r ( label , a s sembler )  
nonop 

Fig. 3. Notation: To the left of the "<  = "  is the data type being defined, and to 
the right, separated by "Jr Jr", are the cases of its definition, giving the constructor 
function for each. For example, l i s t  a < =  nil Jr Jr cons(a,  l i s t  a) .  Also, "$" is 

being used as an infix constructor. 

move-Variables-From-Stmt. N o w  we transform Assemble-Stmt to obtain a recur- 
sive definition not  making use of either of these (similar to the transformation of 
SumSquares  following its introduction). To follow some of the results of this, we 
must  show more details of the specification: 

R e m o v e - V a r i a b l e s - F r o m - S t m t  : SouEe-sla/eme/ l l  x envi/~m/tet~( -> 5ource-Shzlemell/" 

Remove-Variables-From-Stmt(assignment(V,EXPR),ENV) 
<= assignment'(Lookup(V,ENV), 

Remove-Variables-From-Expr(EXPR,ENV)) 

(and so on for the other cases of source-s tatement)  

Form-Assembler-From-Stmt : s o u w e - s l a t e m e n t '  x ~ b e l  -> l i s tassembler  I 

Form-Assembler-From-Stmt(assignment'(ADR,EXPR,),LAB) 

I <= Append(Form-Assembler-From-Expr(EXPR,), store(ADR)) 

(and so on for the other cases of source-slatemenl') 

To do the transformation, we give a GOAL for each case of s o u r c e - s t a t e m e n t  
that  could be an argument to Assemble-Stmt (analogous to giving a GOAL for 
each of the cases of a list of numbers that could be an argument to SumSquares) .  
For example, for the case assignment(V, EXPR) (where V is a variable, EXPR an 
expression) we give (within the appropriate CONTEXT): 

] GOAL Assemble-Stmt(assignment(V,EXPR),ENV,LAB) 1 
<= $$(&&Assemble-Exp r(EXPR, ENV) ,V, ENV) 

Note  that  this will lead to the introduction of another new function, Assemble- 
Expr, which in turn must  be transformed. 

Continuing this process leads to definitions of Assemble-Stmt, Assemble-Expr, 
and Assemble-List-Expr such that  variable removal and formation of assembler 
code are now done simultaneously (avoiding the generation of the intermediate 
structure of source code with variables replaced by addresses), the behavior we 
sought  from this optimization. 
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The equations specifying each of the new functions are these: 

Assemble-Stmt(STMT,ENV,LAB) 
<: Form-Assembler-From-Stmt( Remove-Variables-From-Stmt(STMT,ENV),LAB) 

Assemble-Expr(EXPR,ENV) <= Form-Assembler-From-Expr(Remove-Variables-From-Expr(EXPR,ENV)) 

Assemble-List-Expr(EXPR-LIST,ENV) 
<= Form-Assembler-From-List-Expr( 

Remove-Variables-From-List-E×pr(EXPR-LIST,ENV)) 

Their transformed equations are 

I 
Aisemble-Stmt(assignment(V,EXPR),ENV,LAB) <= Append(Assemble-Expr(EXPR,ENV), store(Lookup(V,ENV))) 

and so on f o r  t h e  o t h e r  cases  o f  sou~ve-statement) 

Assemble-Expr(expr(VAR),ENV) <= cons(load(Lookup(VAR,ENV)),nil) 
Assemble-Expr(application(OPER,EXPR-LIST),ENV) 

<= Append(Assemble-List-Expr(EXPR-LIST,ENV),cons(apply(OPER),nil)) 

Assemble-List-Expr(nil,ENV) <= nil )',I 1 
Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV) 

<= Append(Assemble-Expr(EXPR,ENV),Assemble-List-Expr(EXPR-LIST,ENV) 

4.3.4 Linear Sequences of Manipulations. We have stated all along that the 
bottom layer of our transformation hierarchy consists of the linear sequence of 
manipulations which actually make the changes to the recursion equations. Here 
we consider how the ZAP system performs the expansion from the pattern- 
directed transformation commands into such manipulation sequences. 

The transformation GOALs consist of a left-hand side, the expression to be 
transformed, and a right-hand side, the pattern which expresses the answer 
sought. In the trivial case of no pattern being provided, the left-hand side is fully 
unfolded, and, provided the resulting expression is sufficiently trivial (we do not 
go into the precise meaning of this), it serves as the answer; the manipulation 
sequence is thus the sequence of unfold manipulations used to do the unfolding. 

To understand what happens when a pattern is provided, first consider the 
simple case of no uses of "$$" or "&&". The system unfolds both the left-hand 
side and the pattern as far as possible. If these expand to identical expressions, 
then the pattern is a valid answer; the manipulation sequence is the sequence of 
"unfold" manipulations to unfold the left-hand side, followed by the inverse of 
the sequence of"unfold" manipulations used to unfold the pattern (i.e., a sequence 
of "fold" manipulations). An example is given in Figure 4. 

The use of"$$" and "&&" within patterns is supported by replacing the equality 
test (between expanded left-hand side and expanded pattern} with a pattern 
match, where "$$" and "&&" are the pattern variables. The bindings formed in 
the match are used to instantiate the pattern, giving the exact pattern which, 
when expanded, equals the expanded left-hand side. See Figure 5. Here, the 
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left-hand s i d e  pattern 

SumSquares(cons(N,L)) 
unfoM SumSquares 

Sum(Squares(cons(N,L))) 
$ up~oM Squares 

Sum(cons((N*N),Squares(L))) 
$ u,~oM Sum 

(N'N) + Sum(Squares(L)) = 

(N'N) + SumSquares(L) 

1' unfold SumSquares 

(N'N) + Sum(Squares(L)) 

Manipulation sequence: 

Su.mSquares(cons(N,L)) 

unfold SumSquares Sum(Squares(cons(N,L)) 

uJ~old Squares Sum(cons((N*N),Squares(L))) 

unfoM Sum (N'N) + Sum(Squares(L)) 

fold SumSquares (N'N) + SumSquares(L) 

Figure 4 

left-hand side pattern 

SumSquares(cons(N,L)) $$(N,SumSquares(L)) 

(N'N) + Sum(Squares(L)) $$(N,Sum(Squares(L)) 
match 

Figure 5 

match binds $$ to )~ a b . (a * a) + b, and instantiating the pattern gives 
(N * N) + SumSquares(L). 

The final extension of this process is to make the match take into account 
declared properties of associativity and commutativity. If the matcher makes use 
of such properties, this corresponds to the application of the appropriate lemmas 
in the manipulation sequence. For example, suppose we declare "+" to be 
commutative and have the situation depicted in Figure 6. These are equal up to 
commutativity of "+"; so the manipulation sequence is as given in Figure 7. 

Inspiration for inclusion of this last feature derives from Topor's matcher in his 
interactive verification system [26]. 

If we look at a portion of the compiler transformation, we see how much detail 
is captured by a GOAL step. Figure 8 gives the manipulation sequence ZAP 
generates to achieve the transformation expressed by 

GOAL Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV) <= 
$$(Assemble-Expr(EXPR-LIST,ENV),Assemble-List-Expr(EXPR_LIST,ENV) 

(part of the transformations of Section 4.3.3). 
In truth, our system never actually extrudes the manipulation sequences 

justifying its activities, since we always construct and examine transformations at 
the higher (and more amenable) levels of our hierarchy. 
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left-hand side pattern 

SumSquares(cons(N,L)) SumSquares(L) + (N'N) 

/Sum(Squares(L)) + (N'N) (N'N) + Sum(Squares(L)) ~ m a t c h ~  

Figure 6 

us~oM SumSquares 

unfoM Squares. 

m~oM Sum 

app,' commutativity of "+" 

foM SumSquares 

SumSquares(cons(N,L)) 

Sum(Square.s(cons(N,L))) 

Sum(cons((N*N),Squares(L))) 

(N'N) + Sum(Squares(L)) 

Sum(Squares(L)) + (N'N) 

SumSquares(L) + (N'N) 

Figure 7 

Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV) 

~ unfold Assemble-List-Expr 

Form-Assembler-From-List-Expr(Remove-Variables-From 
-List-ExDr(cons(EXPR,EXPR-LIST),ENV)) 

~unfold Remove-Variables-From-List-Expr 

Append(F.orm-Assembler-From-Expr(Remove-Variables-From-Expr(EXPR,ENV)), 
Form-Assembler-From-List-Expr(Remove-Variables 

-From-List-Expr(EXPR-LIST,ENV))) 

~Lfold Assemble-Expr 

Append(Assemble-Expr(EXPR,ENV), 
Form-Assembler-From-List-Expr(Remove-Variables 

-From-Lis~-Exp£(EXPR-LIST,ENV))) 

~fold Assemble-List-Expr 

Append(Assemble-Expr(EXPR,ENV),Assemble-List-Expr(EXPR-LIST,ENV)) 

Figure 8 

4.4 Transformed Program 

At the end of our entire transformation we emerge with a two-pass compiler 
program, still in recursion equations. The first pass converts source statements 
into assembler code and, simultaneously, constructs a mapping from labels to 
corresponding addresses. In the second pass the mapping is used to replace jumps 
to labels with jumps to explicit addresses, producing the final machine code. 

When we convert to an imperative language, we might take advantage of side 
effects to combine these two passes into a single pass which destructively replaces 
(on the fly) forward referencing labels by addresses. The major change from 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. I, January 1982. 



A System for Assisting Program Transformation 15 

initial program (simple, modular, and multipass in nature) to final program has 
been accomplished by our transformation techniques. 

5. REVIEW OF THE APPROACH 

At this point we look over our approach, describe some enhancements to it (both 
incorporated and planned), and, finally, discuss the significant difficulties we 
foresee. 

Figure 9 shows the hierarchical structure we use for transformation. Most of 
the effort the user must provide is in expanding transformation tactics into 
pattern-directed transformations, in the form of commands to ZAP. Some special 
devices have been incorporated into the system to support this operation. 

5.1 Enhancements 

The enhancements to ZAP in the form of special devices are designed to be used 
in commonly occurring, relatively straightforward transformations. They produce 
the left-hand sides of GOALs to transform a function, and simple recursive 
patterns to serve as entire patterns (or portions of patterns) of GOALs. They are 
called into action by the inclusion of keywords within the pattern-directed 
transformations. 

5.1.1 Producing the Left-Hand Sides of GOALs. This special device generates 
the left-hand sides of GOALs to transform a function, using the data declarations 
of the type(s) of the argument(s) within the left-hand side to construct the cases. 
For example, to transform Sumsquares, we may write 

GOAL SumSquares (CASESOF NUMLIST) < . . . .  

to direct the system to generate the cases for the arguments of SumSquares. To 
do this expansion, the system examines the data declaration for the type of the 
argument; here the type is list number, an instance of the parameterized type list 
a, with data definition 

l i s t  a < =  nil + +  cons(a, l i s t  a). 

Each of the cases of the data definition's right-hand side suggests a case for the 
left-hand side of a GOAL, 

SumSquares(nil); 
SumSquares(cons(N, NUMLIST)). 

5.1.2 Producing Simple Recursive Patterns. This special device generates 
simple recursive patterns to serve as entire patterns (or portions of patterns) of 
GOALs. As with the device to generate cases, the data declaration serves to 
provide the necessary information. For example, in transforming Sumsquares we 
have a goal with left-hand side 

SumSquares(cons(N, NUMLIST)). 

From the data definition of lists, 

l i s t  a < =  nil ++  cons(a, l i s t  a), 
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Transformation Strategy 

h a n d - e x p a n d e d  

Transformation Tactics 

hand-expanded with 
some machine assistance 

Pattern-directed Transformations (expressed as user commands 

automaticaIly expanded 
by ZAP system 

Manipulation Sequences 

Fig. 9. O u r t r a n s f o r m a t i o n  hmrarchy.  

to ZAP) 

the special device deduces that  in dealing with a function call of the form 
Foo(cons(a, a-list)) a simple recursive call would be Foo(a-list). In our example 
this instantiates to 

SumSquares(NUMLIST). 

If the pattern of a goal contains the keyword AUTO (mnemonic for AUTO- 
matic), this is replaced by a simple pattern, $$ with arguments the recursive call 
found in the above manner, together with all the free variables of the left-hand 
side. So 

GOAL SumSquares(cons(N, NUMLIST)) < =  AUTO 

is expanded to 

GOAL SumSquares(cons(N, NUMLIST)) 
<-- $$(N, NUMLIST, SumSquares(NUMLIST)). 

J ~ J 
Y Y 

free variables recursive call 
of left-hand side 

We may use this in our compiler example; for example, 

GOAL Assemble-List-Expr(cons(EXPR, EXPR-LIST), ENV) 
<-- $$(Assemble-Expr(EXPR, ENV), AUTO). 

AUTO expands to include a simple recursive call to Assemble-List-Expr, and 
the pattern produced is 

$$(Assemble-Expr(EXPR, ENV), 
$$(EXPR, EXPR-LIST, ENV, Assemble-List-Expr(EXPR-LIST))). 

Note that, although this is more general than the pattern we would have typed 
in by hand (because it contains some unnecessary variables), the transformation 
has the same effect. 

The CASESOF and AIJTO devices may be used in conjunction; for example, 

GOAL SumSquares(CASESOF NUMLIST) <-- AUTO 
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expands to 

GOAL SumSquares(nil) <- -  $$0 
GOAL SumSquares(cons(N, NUMLIST)) 

< =  $$(N, NUMLIST, SumSquares(NUMLIST)). 

5.1.3 Motivation for Nature of Enhancements. Our motivation for the inclu- 
sion and method of activation of these devices comes from the observation that 
often, during expansion of a tactic into pattern-directed transformations, very 
simple cases and patterns are required. These we sought to automate, so that the 
user would be freed to concentrate upon the more complex portions where his 
intelligence is needed. We still require the user to activate them (rather than 
always attempting to apply them), reasoning that this gives the user the appro- 
priate degree of control. Furthermore, it is easy for the user to override them 
should they fail. 

We would like to see further development of the system fit into this framework. 
For example, we might automate expansion of our simple strategy so that, given 
a program to transform, the system suggests a sequence of tactics to implement 
that strategy; the user could then follow that sequence, perhaps modifying it 
slightly where his insight suggested necessary divergences. 

5.2 Other Transformations 

Two other sizable transformations (in the same class of problems as the compiler 
example) that we have performed with the aid of our system are these: 

(1) The Telegram Problem (from [16]). This problem involves decoding an 
incoming stream of characters representing telegrams and amassing statistics 
about the telegrams. This problem served as the first major example upon which 
we developed our approach and system. Reference [14] discusses the transfor- 
mation. The scale of the problem (judged in terms of number of recursion 
equations defining the initial program) was about half the size of the compiler 
example (some 30 equations as compared to 60). 

(2) A Text Formatter. We adopted the formatter described in [17, chap. 7]. 
This program takes as input text interspersed with commands to direct the layout 
of that  text. Typical formatting operations, such as filling and justifying lines to 
align the right margin, centering text between margins, providing page numbers 
and titles, etc., are supported. We wrote a recursion equation program to perform 
all their formatting operations but concentrated on structuring the program in as 
straightforward a manner as possible. Our resulting program was really very 
different from, and much simpler than, Kernighan and Plauger's. See [12] for 
details of this specification. In terms of scale this was much larger than the 
compiler example (over 200 equations). In terms of difficulty of carrying out the 
transformation, the effort required had grown more than linearly with the number 
of equations. In retrospect we see that the difficulties were already present in the 
transformation of the compiler; however, its smaller scale made them relatively 
innocuous. What these difficulties were we consider next. In spite of the difficul- 
ties, we were successful in completing the transformation of this sizable program. 
We believe this to be the largest machine-assured transformation carried out to 
date. 
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Fo rm-Assemb I e r -F  r o m - S t m t  

Form-Assembl  e r -F  rom-Exp  r 

S t  
Fo rm-Assembl  e r -F  r o m - L i  s t - E x p  r 

R e m o v e - V a r i a b l  es -F  rom-S tmt  
$ 

R e m o v e - V a r i a b l  es -F  rom-Exp r 

R e m o v e - V a r i a b l  e s -  F r o m - L i s t - E x p r  

Assembl e - S t m t  
$ 

Assembl e - E x p r  
~ f  

A s s e m b l e - L i s t - E x p r  

Figu re  10 

5.3 Difficulties 

We have already pointed out that the expansion from tactics to pattern-directed 
transformations consumes most of our effort. Disturbingly, the effort required 
seems to be growing faster than the scale of the programs we are transforming. 
Of course, programming effort in following conventional development methods 
also increases nonlinearly with the size of the program. 

We identify several sources of difficulty encountered during transformation in 
the following subsections. 

5.3.1 Weakness of Patterns. Although we may include within our patterns 
variables ($$ and &&) to abstract away some of the detail, as the recursion 
equations get larger and more complex (as is the case during longer transforma- 
tions) we still find ourselves having to construct larger and more complex patterns. 
To overcome this, we might 

(1) extend the enhancements to provide more system-generated portions to be 
included in patterns or 

(2) make our patterns more general so as to be able to abstract away more of the 
detail when describing the desired goal of a transformation. We have only 
begun to consider how this might best be done. 

5.3.2 Repeated Structure of Transformation. Examining a portion of the com- 
piler transformation (Section 4.3.3), we can see a similarity between the structure 
of the initial recursion equations and the structure we transform into; see Fig- 
ure 10. 

In writing pattern-directed transformations we are forced to repeat this struc- 
ture by hand--an  annoying situation that  tends to occur repeatedly within larger 
transformations. Clearly, there is need for some mechanism to abstract out the 
algorithmic structure which we can then use to assist in generation of transfor- 
mation commands. Such a mechanism should integrate well with the CASESOF 
and AUTO devices. 

5.3.3 Sensitivity of Tactics to the Structure of Functions. At the tactics level 
our hope was that  the expansion of tactics would not depend crucially upon the 
entire structure of the recursive functions. In examining the compiler transfor- 
mation we see that the application of the tactic to combine Assemble and 
Remove-Labels in fact did depend crucially on the way in which these functions 
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called other lower level functions. In fact, our very first action was to perform a 
simple generalization: the application of a tactic not predicted at the strategy 
level. We might consider this an omission due to naivet~ when expanding strategy 
into tactics or, alternatively, conclude that in expanding tactics we might generate 
further applications of tactics. Clearly, the algorithmic structure is important in 
our transformation process. As we increase the scale and complexity of programs 
to be transformed, the algorithmic structure becomes deeper and more complex, 
and we observe this phenomenon more and more. 

6 CONCLUSIONS 

We have presented an approach to applying a transformation method to programs 
of increasing scale. Our experience in performing several sizable transformations 
has demonstrated success in this regard. We have identified areas where our 
techniques require improvement and have made some suggestions as to how this 
might be done. In addition to continuing investigations into performing larger 
and more complex transformations, we see wide scope for investigating how 
transformation might assist in program modification and maintenance. To com- 
plete the viability of our approach, we recognize the need for further research 
into the conversion of applicative programs into imperative programs making use 
of destructive operations on appropriate data structures. Further detail about the 
work described here may be found in [13]. 
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